Mucool cryo-design

Christine Darve
Fermilab/Beams Division/ Cryogenic Department
8/12/02

Content

- Process and Instrumentation Diagram
 - Gas Shed
 - Experimental Hall
 - Absorber cryostat
- Design
 - Cryostat
 - Safety requirements
 - HX He/LH2
- Pump test
 - Description
 - Preliminary Results

Process and Instrumentation Diagram

Gas Shed

Equipment:

- Gas H2 bottle
- Gas N2 bottle
- O2 adsorber
- Vacuum pump
- Flam. Gas detector
- ODH detector
- Pneumatic air supply s

Instrumentation:

- Flowmeter Transducer
- Pressure Reg. Valve
- Safety Valve
- Manual Valve
- Excess flow Valve
- Pneumatic Valve
- Electrical Valve
- Check Valve
- Pressure Indicator
- Pressure Transducer

Experimental Hall

Equipment:

- Roughing Vacuum pump
- Turbo Molecular pump
- Gas He Supply/Return
- Gas N2 Supply/Return
- Liq. N2 Supply/Return
- Vaporizer
- Flam. Gas detector
- ODH detector
- Pneumatic air supply sys.

Instrumentation:

- Temperature Transducer
- Pressure Transducer and Indicator
- Flowmeter Indicator
- Heater
- Safety Valve
- Temperature Controlled Valve
- Pressure Reg. Valve
- Manual Valve
- Pneumatic Valve
- Electrical Valve
- Check Valve

- The Cryostat is defined as the containment vessel.
- Vacuum volume around the absorber: safety+reduce the heat load to be extracted by the cryoloop.
- ◆ Maximum Allowable Working Pressure = 25 psid

Absorber cryostat design:

- LH2 absorber in the 5 T Lab-G magnet bore
- Safety devices for the LH2 cryo-loop
- Provide LH2 cooling within the admissible pressure drop limit imposed by the pump
- LH2 circulation provided by pump
- Heat exchange with the helium to ensure a temperature gradient in the LH2 less than 3 degrees
- Connect the helium refrigeration
- Insertion in the Linac Test Area

Pump test - Overview

Water Pump test set-up at E4R

Pump and its housing

Heater

Pump test – Preliminary results

Preliminary conclusion

- Equivalent mass-flow in both forward and reverse mode
- No significant influence on pump efficient, for a DT of 22 K

Conclusions

- PID: To be finalized after Reviews
 - Internal Review by end August
 - General Review to plan
- Design:
 - Final Designs after Reviews
 - Final detail drawings by end of November 2002 (or after reviews)
- Water pump test:
 - More test to validate the results
 - Correlation with LH2
 - Error analysis
 - Correlation with measurement of DT during experiment